Abstract

Conjugation of RNA with multiple partners to obtain mimics of complex biomolecules is limited by the identification of orthogonal reactions. Here, lipid-carbohydrate-peptidyl-RNA conjugates were obtained by post-functionalization reactions, solid-phase synthesis, and enzymatic steps, to generate molecules mimicking the substrates of FmhB, an essential peptidoglycan synthesis enzyme of Staphylococcus aureus. Mimics of Gly-tRNAGly and lipid intermediate II (undecaprenyl-diphospho-disaccharide-pentapeptide) were combined in a single "bi-substrate" inhibitor (IC50 =56 nm). The synthetic route was exploited to generate substrates and inhibitors containing d-lactate residue (d-Lac) instead of d-Ala at the C-terminus of the pentapeptide stem, a modification responsible for vancomycin resistance in the enterococci. The substitution impaired recognition of peptidoglycan precursors by FmhB. The associated fitness cost may account for limited dissemination of vancomycin resistance genes in S. aureus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.