Abstract
The present study highlights the integration of lignin with graphene oxide (GO) and its reduced form (rGO) as a significant advancement within the bio-based products industry. Lignin-phenol-formaldehyde (LPF) resin is used as a carbon source in polyurethane foams, with the addition of 1 %, 2 %, and 4 % of GO and rGO to produce carbon structures thus producing carbon foams (CFs). Two conversion routes are assessed: (i) direct addition with rGO solution, and (ii) GO reduction by heat treatment. Carbon foams are characterized by thermal, structural, and morphological analysis, alongside an assessment of their electrochemical behavior. The thermal decomposition of samples with GO is like those having rGO, indicating the effective removal of oxygen groups in GO by carbonization. The addition of GO and rGO significantly improved the electrochemical properties of CF, with the GO2% sensors displaying 39 % and 62 % larger electroactive area than control and rGO2% sensors, respectively. Furthermore, there is a significant electron transfer improvement in GO sensors, demonstrating a promising potential for ammonia detection. Detailed structural and performance analysis highlights the significant enhancement in electrochemical properties, paving the way for the development of advanced sensors for gas detection, particularly ammonia, with the prospective market demands for durable, simple, cost-effective, and efficient devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.