Abstract

Many of the chemistry-based processing routes for functional ceramics inevitably involve calcining the chemical-derived precursors at an intermediate/high temperature, in order to form the designed ceramic phase. This is very undesirable, although widely used, as the calcination can result in an extensive degree of crystal growth and particle coarsening at the calcination temperature and therefore ruins almost all the advantages offered by the chemistry-based processing routes, such as an ultrafine particle size and high sintering-reactivity. Using a specifically designed PZT precursor prepared by co-precipitation, it is demonstrated that the precursor-to-ceramic conversion can alternatively be realized by mechanical activation. In this connection, a single phase, nanocrystalline perovskite PZT powder has been successfully derived from an amorphous hydroxide precursor by mechanical activation. The resulting PZT powder was well dispersed, and the particle size was in the range of 30–50 nm, as observed using the scanning electron microscopy and transmission electron microscopy. This is in contrast to the poor particle characteristics, represented by very coarse and irregular particle and agglomerate sizes, for the powder derived from calcination at 750°C. The activation-triggered PZT powder was sintered to a density of 97.6% theoretical density at 1150°C for 1 h. Sintered PZT ceramic exhibits a dielectric constant of 927 at room temperature and a peak dielectric constant of ∼9100 at the Curie point of 380°C when measured at the frequency of 1 kHz.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.