Abstract

Periodic mesoporous organosilica (PMO) materials with large pores have been successfully synthesized using a combinational strategy by decreasing both the synthesis temperature and acidity. Herein, we use a tri-block copolymer EO106PO70EO106 [Pluronic F127, where EO is poly(ethylene oxide) and PO is poly(propylene oxide)] as the template, bis(trimethoxysilyl)ethane (BTME) as a silica source and 1,3,5-trimethylbenzene (TMB) as a pore expander. The PMO material synthesized in this approach has a face-centered cubic ( fcc) structure. When the synthesis temperature is 0 °C and the acidity is 0.1 M HCl, the pore diameter of the PMO material reaches 33.6 nm, which is the largest among cubic PMO materials to our knowledge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.