Abstract

Well-defined hybrid polymers consisting of organic polymers grafted from inorganic backbone were synthesized by atom transfer radical polymerization (ATRP). Ladder-like structured polysilsesquioxane functioned as both ATRP initiator and hard inorganic backbone, while the organic polymers grafted were hard styrene and soft n-butyl acrylate. Ladder-like structured poly(chloromethylphenylsilsesquioxane) (LCMPSQ) was synthesized using sequential two-step reactions with (ρ-chloromethyl)phenyltrimethxysilane as a monomer in one bath in the presence of K2CO3 as a base catalyst (M w = 6,000). Obtained LCMPSQ was then used as a multi-functional macroinitiator for graft polymerization of styrene (St) or/and n-butyl acrylate (nBA) monomers via ATRP using a CuCl catalyzed system, which gave three types of hybrid graft polymers: poly(styrene-g-silsesquioxane) (PS-g-PSQ), poly(nBA-g-silsesquioxane) (PnBA-g-PSQ) and poly(styrene-ran-nBA-g-silsesquioxane) (PS/nBA-g-PSQ). The hybrid graft polymers were prepared with various organic/inorganic weight fractions by changing the molecular weights of the organic graft polymers, which showed narrow molecular weight distributions (PDI < 1.4) on less than 50% of the polymerization conversion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.