Abstract

The preparation of 2-deoxy-l-ribose derivatives or mirror image deoxyribonucleosides (l-deoxyribonucleosides) from d-ribose is reported. Starting from inexpensive d-ribose, an acyclic d-form carbohydrate precursor was synthesized to study a unique carbonyl translocation process. In this novel radical reaction, not only was the configuration of the sugar transformed from the d-form to the l-form, but also deoxygenation at the C(2) position of the sugar was successfully achieved. This is one of the most practical methods for converting a d-sugar to a 2-deoxy-l-sugar in a one-step reaction. To further identify the reaction product, radical reactions followed by treatment with 1,3-propanedithiol and then benzoylation were performed to afford a dithioacetal derivative. The stereochemistry and configuration of the 2-deoxy-l-ribose dithioacetal derivative were confirmed by its X-ray crystal structure. To further apply this methodology, a diethyl thioacetal derivative was formed, followed by selective benzoyl protection, and an NIS-initiated cyclization reaction to give the desired ethyl S-l-2-deoxyriboside, which can be used as a 2-deoxy-l-ribosyl synthon in the formal total synthesis of various l-deoxyribonucleosides, such as l-dT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.