Abstract

Three isoreticular zinc(II)-phosphonocarboxylate frameworks, namely {[Zn(3)(pbdc)(2)]·2H(3)O}(n) (ZnPC-2), {[Zn(3)(pbdc)(2)]·Hpd·H(3)O·4H(2)O}(n) (Hpd@ZnPC-2) and {[Co(1.5)Zn(1.5)(pbdc)(2)]·2H(3)O}(n) (CoZnPC-2) (H(4)pbdc=5-phosphonobenzene-1,3-dicarboxylic acid, pd=pyrrolidine), were solvothermally synthesized. ZnPC-2 has a 3D structure based on trinuclear Zn(II) clusters (Zn(3)-SBU) showing 3D interconnected channels. Hpd@ZnPC-2 contains an isoreticular framework of ZnPC-2 with small channels blocked by Hpd molecules. In CoZnPC-2, Zn(II) ions in ZnPC-2 are partially substituted by Co(II) ions. The Friedel-Crafts benzylation reactions were carried out over these isoreticular porous materials. The catalytic results reveal that ZnPC-2 is an excellent heterogeneous Lewis acid catalyst with a high selectivity (>90%) towards less bulky para-oriented products. The catalytic reaction has been proved to occur inside the pore of ZnPC-2, and the immobilized Zn(3)-SBUs are the active sites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call