Abstract

The removal of color-causing compounds from wastewater is a significant challenge that industries encounter due to their toxic, carcinogenic, and harmful properties. Despite the extensive research and development of various techniques with the objective of effectively degrading color pollutants, the challenge still persists. This paper introduces a simple technique for producing iron oxide nanoparticles (Fe2O3 NPs) using orange fruit peel for sustainable dye degradation in aqueous environment. The observation of color change and the measurement of UV-visible absorbance at 240nm provided a confirmation for the development of Fe2O3 NPs. Transmission electron microscopy examination demonstrated that the Fe2O3 NPshave an agglomerated distribution and forming spherical structures with size ranging from 25-80nm. Energy-dispersive X-ray spectroscopy analysis supported the existence of Fe and O. Fourier transform infrared spectroscopy conducted to investigate the involvement of orange peel extract in the reduction, capping, and synthesis of Fe2O3 NPs from the precursor salt. Fe2O3 NPs showed a photocatalytic remediation of 97%, for methylene blue under visible light irradiation. Additionally, prepared NPs exhibited concentration depended biofilm inhibition action against E. coli and S. aureus. In conclusion, Fe2O3 NPs can efficiently purify water and suppress pathogens due to their strong degrading activity, reusability, and biofilm inhibitionproperty.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call