Abstract

The study was focused on optimizing the procedure of synthesizing iron gallate (FeGa2O4) nanoparticles by mechanochemical techniques. Due to a lack of information in the literature about the sequence of synthesis procedures of FeGa2O4 structures, the study is based on the establishment of a recipe for FeGa2O4 synthesis using mechanochemical techniques. Rotation speed, grinding media, and milling durations were the optimized parameters. At the end of each step, the structure of the resulting samples was investigated using the X-ray diffraction (XRD) patterns of samples. At the end of the processes, the XRD patterns of the samples milled under an air atmosphere were coherent with the XRD pattern of the FeGa2O4 structure. XRD patterns were analyzed employing Rietveld refinements to determine lattice parameters under the assumption of an inverse spinel crystal formation. Furthermore, a fluctuation at band gap values in the range of 2.39 to 2.55 eV was realized and associated with the excess Fe atoms in the lattice, which settled as defects in the crystal structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call