Abstract

Our work is focused on facile synthesis and modification of amylopectin‐grafted block copolymers by using reversible addition−fragmentation chain transfer (RAFT) polymerization technique. This technique yields polymers with controlled molecular weight and low polydispersity indexes and is feasible with a wide range of monomers. Five different grades of amylopectin‐grafted polymethacrylic acid and polyacrylamide block copolymers have been synthesized via RAFT, by varying the amount of acrylamide employing amylopectin‐based macro chain transfer agent. Graft copolymers have been upgraded as smart responsive graft copolymers, through the incorporation of iron oxide nanoparticles (IONPs) via condensation reaction. The polymeric materials have been extensively characterized by energy‐dispersive X‐ray analysis, Fourier transform infrared spectroscopy, proton magnetic resonance spectroscopy, scanning electron microscopy, ultraviolet‐visible spectroscopy, gel permeation chromatography, transmission electron microscopy, thermogravimetric analysis, and X‐ray diffraction analysis. Normal and responsive graft copolymers have been studied for removal of model contaminant (kaolin), and responsive graft copolymers have been used to remove methylene blue dye (without using any adsorbent) from water by applying external magnetic field. The upgraded block copolymers have shown best performance in wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call