Abstract

Fe(III)-IIPs material was prepared using a cooling-heating method with different leaching variations. The synthesis process used several chemical components, including EGDMA, MAA, and BPO as the crosslinker, functional monomer, and initiator. This study focused on the template formation process of IIPs with leaching variations, using parameters such as molarity concentration, solution mixture, and temperature to influence the amount of template formed in the polymer body. The spectra of XRD showed a widening value of FWHM as higher molarity was applied during the leaching process, with the widest one at 0.163 rad for IIPs 3 M. Fe(III) peak is located at 680-610 cm−1 or 1386-1350 cm−1 within the unleached sample, according to FTIR spectra. It also can be traced at minimum intensity in leached samples. SEM data processing showed that higher concentrations were essential in releasing Fe(III) ions from the polymer body. Meanwhile, heat treatment did not strongly impact the template formation sites of IIPs. Synthesized Fe(III)-IIPs materials had adsorption capacity, optimum time, and efficiency of 9.35 mg.g−1, 40 minutes, and 93.48%, respectively. Based on the results, Fe(III)-IIPs materials had great potential as adsorbents for removing metal pollutants from water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.