Abstract

The present study synthesizes carbon nanofibers (CNF) over a graphitic carbon nitride (g-C3N4) substrate without requiring an external carbon-source. In this novel route of the synthesis, g-C3N4 acts as the substrate as well as the internal source of carbon. Ni nanoparticles (NPs) dispersed in g-C3N4 catalyze the decomposition of triazine rings and N heterocycles in the material to form a web of CNF over g-C3N4. Tested for its catalytic activity towards the reduction of aqueous nitrobenzene (NB) using the hydrazine monohydrate reducing agent, Ni-CNF/g-C3N4 shows an approximately 95% conversion of NB. The high catalytic activity of the material is ascribed to the combined effects of g-C3N4, Ni NPs, and CNF. The present study has clearly established an efficient, easy, and inexpensive route for synthesizing CNF-based 3D nanostructures that are useful in many engineering applications including energy and environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call