Abstract

The "RNA World" hypothesis suggests that an early form of life on Earth was based on nucleic acid strands able to store genetic information and catalyze a wide range of reactions including those which lead to self-replication. For this hypothesis to be true there must exist an efficient process for creating RNA or RNA-like polymers of mixed sequences from short precursors, where these polymers have to be long enough to fold into catalytically active structures (at least 40 bases). We report on the polymerization of dimeric to hexameric 5'-amino- oligodeoxynucleotides 3'-phosphates in the presence of the water-soluble carbodiimide EDC. Non-complementary single stranded nucleotides fail to polymerize and yield di- to hexameric cyclooligomers or capped EDC-adducts unable to undergo further 3'-5'-phosphoramidate formation. Complementary building blocks polymerize with a conversion close to 100% when starting from a concentration of typically 20 mM. The reactions proceed within a few hours yielding strands of mixed pyrimidine-purine sequences up to 300 bases long. The maximum length of the products depends on the type of the starting oligonucleotides. Copolymerization of a dimer alphabet consisting of equimolar quantities of all four sequences d(nYRp), where Y are pyrimidines and R are purines, generates a mixed-sequence library of 50-70 mers. Libraries of long oligonucleotides with potentially catalytic activity are formed from short precursors within hours. Reactions occur via blunt end ligation of the double strands, and the reaction rates correlate with stacking interactions at the ligation sites. Circular dichroism measurements, polarized light microscopy and fluorescence microscopy suggest the formation of supramolecular aggregates during chain growth. These aggregates accelerate the reactions by increasing the local concentration of the reactants in a non-sequence-specific templating mode. Aggregation of the double strands into higher order "compartimented" structures might have been the key for the formation of the first inhabitants of the "RNA World".

Highlights

  • The “RNA World” hypothesis suggests that an early form of life on Earth was based on nucleic acid strands able to store genetic information and catalyze a wide range of reactions including those which lead to self-replication

  • Polycondensation of dinucleotides 5’-amino-3’-phosphate dinucleotides, tetranucleotides and hexanucleotides have been used as a starting material for the polycondensation reaction

  • The course of the reactions was followed by high pressure liquid chromatography (HPLC), Matrix-assisted laser desorption/ionization (MALDI) and denaturing polyacrylamide gel electrophoresis (PAGE)

Read more

Summary

Objectives

The goal of the study is to understand the reaction mechanism and explore the efficiency of the reaction for nucleotides of different length and composition

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.