Abstract

At present, N-, S-, and B-doped grapheme-modified indium tin oxide (ITO) electrodes are produced and doping method effect on the glucose electrooxidation is investigated. Firstly, few-layer graphene is produced by chemical vapor deposition (CVD) method. Then, N, S, and B doping is carried out after graphene produced by CVD to prepare N-doped, B-doped, and S-doped few-layer graphene. N, S, and B doping is carried out by two different ways as (a) doping after synthesis of few-layer graphene and (b) in situ doping during few-layer graphene production. These materials are characterized by X-ray diffraction, scanning electron microscopy-energy (SEM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). One could note that graphene and nitrogen networks are clearly visible from SEM images. Raman spectra show that B, N, and S are doped on few-layer graphene/ITO successfully. XPS results of graphene, N-doped graphene, and in situ N-doped graphene reveal that graphene and nitrogen atoms used in the preparation of the electrodes obtain mainly in their elemental state. Then, these N-, S-, B-doped and in situ N-, S-, B-doped few-layer graphene materials are coated onto indium tin oxide (ITO) to obtain N-, S-, B-doped and in situ N-, S-, B-doped ITO electrodes for glucose (C6H12O6) electrooxidation. C6H12O6 electrooxidation measurements are investigated with cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy measurements. As a result, in situ N-doped few-layer graphene/ITO electrode displays the best C6H12O6 electrooxidation activity with 9.12 mA.cm−2 current density compared with other N-, S-, B-doped graphene and in situ doped S and B grapheme-modified ITO electrodes. Furthermore, this current density value for in situ N-doped few-layer graphene/ITO is highly above the values reported in the literature. In situ N-doped few-layer graphene/ITO electrode is a promising electrode for C6H12O6 electrooxidation because it exhibits the best electrocatalytic activity, stability, and resistance compared with other electrodes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.