Abstract

HypothesisHyperbranched polymers, not only possess higher functionality, but are also easier to prepare compared to dendrimers and dendric polymers. Combining electrodeposition and surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization is hypothesized to be a novel strategy for preparing hyperbranched polymer films on conductive surfaces without degassing. ExperimentsPolymer brush grafted films with four different architectures (i.e. linear, branched, linear-block-branched, and branched-block-linear) were prepared on gold-coated glass substrates using electrodeposition, followed by SI-PET-RAFT polymerization. The resulting film structure and thickness, surface topology, absorption property, and electrochemical behavior were confirmed by spectroscopy, microscopy, microbalance technique, and impedance measurement. FindingsThese hyperbranched polymer brushes were capable of forming a thicker but more uniformly covered films compared to linear polymer brush films, demonstrating that hyperbranched polymer films can be potentially useful for fabricating protective polymer coatings on various conductive surfaces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call