Abstract
The objectives of this study were to prepare a high-purity hydroxylammonium nitrate (HAN) solution and evaluate the performance of various types of metal oxide/honeycomb catalysts during the catalytic decomposition of the HAN solution. Hydroxylammonium nitrate was prepared via a neutralization reaction of hydroxylamine and nitric acid. FT-IR was used to analyze the chemical composition, chemical structure, and functional groups of the HAN. The aqueous HAN solution obtained from pH 7.06 showed the highest concentration of HAN of 60% and a density of 1.39 g/mL. The concentration of HAN solution that could be obtained when the solvent was evaporated to the maximum level could not exceed 80%. In this study, catalysts were prepared using a honeycomb structure made of cordierite (5SiO2-2MgO-2Al2O3) as a support, with Mn, Co, Cu, Pt, or Ir impregnated as active metals. The pore structure of the metal oxide/honeycomb catalysts did not significantly depend on the type of metal loaded. The Cu/honeycomb catalyst showed the strongest effect of lowering the decomposition onset temperature in the decomposition of the HAN solution likely due to the intrinsic activity of the Cu metal being superior to that of the other metals. It was confirmed that the effect of the catalyst on the decomposition mechanism of the aqueous HAN solution was negligible. Through a repetitive cycle of HAN decomposition, it was confirmed that the Cu/honeycomb catalyst could be recovered and reused as a catalyst for the decomposition of an aqueous HAN solution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.