Abstract

AbstractHydroxyethylcellulose‐graft‐poly (N, N‐dimethylacrylamide) was synthesized by successive atom transfer radical polymerization (ATRP) of N,N‐dimethylacrylamide (DMA) monomer using HEC‐Br as initiator, CuBr and 5,5,7,12,12,14‐hexamethyl‐1,4,8,11‐tetraazamacrocyclotetradecane (Me6[14]aneN4) as catalyst and ligand, with molar ratio DMA: HEC‐Br (CBr): CuBr: Me6[14]aneN4 = 100 : 1 : 1 : 3. HEC–Br macroinitiator was synthesized by esterification of HEC with 2‐bromoisobutyryl bromide. GPC and 1H NMR studies show that the molecular weight of the resulting PDMA increased linearly with the conversion. Within 6 h, the polymerization can reach almost 60% of conversion. The copolymer is applied for the separation of basic proteins in capillary electrophoresis. The results show that this medium has a powerful capability in resisting basic proteins adsorption because the polymer forms noncovalent coating in silica capillaries. With a broad range of pH 2–7, proteins were separated with sufficient efficiencies above 200,000 plates/m. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call