Abstract

Pluronics F127, P123, and F87 were employed to synthesize hydroxyapatite nanorods for biomedical applications. The calcium phosphate precipitates were characterized by XRD, TEM/EDS, FTIR, and TGA. Pluronics affected the phase evolution of the calcium phosphate precursors in the mother solution at room temperature. The hydroxyapatite nanorods with a diameter of 20 nm, a length of 100 nm, and a Ca/P ratio of 1.70 were obtained after the precursors were heated at 140 °C for 3 h in a Teflon-lined autoclave. There is about 2 wt% Pluronic on the surface of hydroxyapatite. The hydroxyapatite with a small amount of organics on the surface can be potentially used as fillers in biomedical composites with excellent biological and mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.