Abstract

Analogous to cellulose, polymers whose monomer units possess both hydrogen donators and acceptors are generally insoluble in ambient water because of hydrogen bonding (HB). Herein we present stimuli-responsive long aqueous cylindrical vesicles (nanotubes) synthesized directly using HB-driven polymerization-induced self-assembly (PISA) under visible-light-mediated RAFT aqueous dispersion polymerization at 25 °C. The PISA undergoes an unprecedented film/silk-to-ribbon-to-vesicle transition and films/silks/ribbons formed at low DPs (∼25-85) of core-forming block in free-flowing aqueous solution. Pore-switchable nanotubes are synthesized by electrostatic repulsive perturbation of the HB association in anisotropic vesicular membranes via inserting minor ionized monomer units into the core-forming block. These nanotubes are synthesized at >35% solids, and tubular membranes are more sensitive than spherical counterparts in response to aqueous surroundings. This facile, robust, and general strategy paves a new avenue toward scale-up production of advanced intelligent nanomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call