Abstract

Hydrogen- and methyl-capped polyynes have been synthesized by irradiating pure liquid toluene with 35 fs, 300 μJ laser pulses having a central wavelength of 800 nm, generated by a regeneratively amplified Ti:sapphire tabletop laser at a repetition rate of 1 kHz. Raman spectroscopy was used to confirm the presence of polyynes in the irradiated samples while high-performance liquid chromatography was used to separate hydrogen-capped polyynes up to C18H2 and methyl-capped polyynes up to HC14CH3. These represent the first such methyl-capped polyynes and the longest hydrogen capped chains synthesized to date by the ultrafast laser based method. Furthermore our results show that choice of the starting solvent molecule directly influences the end caps of the polyynes which can be produced.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.