Abstract

Novel organic/inorganic hybrid polyphosphazenes were prepared by free radical UV copolymerization of linear polyphosphazenes and vinyl monomers. In this work, linear polyphosphazenes grafted by allyl amino and n-butylamino groups have been synthesized via nucleophilic substitution reaction at an anhydrous and anaerobic atmosphere. By regulating the molar ratio of allyl amino and n-butylamino groups, five different linear polyphosphazenes were prepared. The hybrid polyphosphazenes have been crosslinked using the linear polyphosphazenes and vinyl monomers including styrene, methyl methacrylate, and lauryl methacrylate as intermediates via free radical UV copolymerization. By changing the quantity of vinyl monomers participating in the crosslinking reaction, series of hybrid polyphosphazene membranes were obtained. The linear polyphosphazenes have been characterized by Nuclear magnetic resonance, Fourier transform infrared (FTIR), Thermogravimetric analysis (TGA), Differential scanning calorimeter, Dynamic mechanical analyzer and Drop Shape Analysis (DSA). The hybrid polyphosphazenes have also been studied via FTIR, TGA and DSA. The test results proved that the linear polymers were successfully synthesized. Moreover, the water contact angles showed that the hybrid crosslinked polyphosphazenes had a better hydrophobicity and thermal stability than the linear polyphosphazenes and the hydrophobicity of hybrid membranes have a regular changing tendency with the quantities of UV-monomers and ratio of allylamino. The initial decomposition temperatures of the hybrid polymers also had a regular change due to the difference and quantities of vinyl monomers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call