Abstract

Hybrid nanocrystals (NCs) with multiple components and junctions have attracted considerable attention due to their promising synergistic properties. In particular, great attention has been paid to the manipulation of buried multijunction heterointerfaces because they are closely related to the surface energy and carrier transfer of NCs. However, heterointerfaced NCs are usually constructed by sequential step-by-step pathways, and buried interfaces can only be formed along a given direction, resulting in the one and only spatial orientation of multiple interfaces. In this work, we demonstrate two types of Au-Ag2S-Cu2-xS NCs with disparate interfacial features. Specifically, the first type (Type I) is prepared through a routine two-step method and shows that Au domain close to the Ag2S-Cu2-xS interface; another type (Type II) is achieved by a facile one-pot synthesis procedure and contains Au domain with an interphase only with the Ag2S domain, far from the Cu2-xS domain. More importantly, type II NCs could not be formed through other traditional strategies and an underlying mechanism of formation is developed by monitoring the evolution process. Au@Ag core–shell NCs, metastable Au@Ag2S NCs and Janus Au-Ag2S NCs are formed successively before the Cu2-xS domain appears. We speculate that the Au@Ag2S intermediate plays an essential role in building the final complex nanostructure. We expect that such a simple and facile one-pot method will be used to fabricate additional asymmetric multicomponent NCs with distinctive interfacial features and promising potential applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.