Abstract

A novel non-hydrolytic synthesis of silicophosphate xerogels and optimization of reaction conditions to obtain products with a high degree of condensation and a large specific surface area are presented. Homogeneous products with a high content of Si–O–P bonds and SiO6 moieties were synthesized by an ester elimination route at low temperature from silicon acetate, Si(OAc)4, and tris(trimethylsilyl)phosphate, OP(OSiMe3)3 (TTP). Depending on the reaction conditions (temperature, solvent, time) it was possible to control the degree of condensation (up to 85.7%) and porosity of amorphous xerogels (apparent surface areas from 230 to 568m2g−1). The composition and morphology of the xerogels, volatile reaction byproducts, thermal transformations and surface modification with methanol were followed by elemental analysis, IR spectroscopy, thermal analysis TG-DSC, nitrogen adsorption, 13C, 29Si, and 31P solid-state NMR spectroscopy, and powder XRD.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.