Abstract
Semiconductor metal oxides have attracted wide attention in the area of gas sensor due to that they have unique advantages in the rapid and accurate detection of harmful gases. A simple strategy is to synthesize porous NiO hollow microspheres via a simple hydrothermal method with trisodium citrate as structure guide agent is presented in this paper, and the shell of the microsphere is composed of porous and lamellar assembly units. The cavity proportion can be adjusted by changing the amount of trisodium citrate. A reasonable mechanism was proposed to explain the formation of porous NiO hollow microspheres. As a gas-sensing material, porous NiO hollow microspheres show excellent gas selectivity and rapid response recovery time for n-butyl alcohol gas. When the content of trisodium citrate was 0.10 g, the synthesized hollow sphere NiO had the highest response value (25.6) to 100 × 10–6 of n-butyl alcohol at 300 °C and the response and recovery times were only 68 and 10 s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.