Abstract
The use of biopolymers obtained from natural resources as a carbon source has attracted much attention. In this study, we introduced a novel method for synthesis of hollow magnetic carbon microbeads (HMCMs) based on core-shell alginate hydrogel microbeads consisting of a hydrophobic iron-oleate core encapsulated in a shell of ionically cross-linked alginate hydrogel using the syringe pump with the fabricated double-layered syringe needle. This allows in-situ formation of magnetic particles and carbon walls simultaneously during carbonization. After surface passivation with a silica coating followed by direct carbonization led to in-situ formation of iron oxide particles via the thermal decomposition of the iron-oleate precursor in the core region and a carbon shell derived from the cross-linked alginate polymer during carbonization. The subsequent removal of the silica shell resulted in the formation of HMCMs with a unique surface wrinkle morphology and superparamagnetic property. HMCMs were applied to remove dye from the contaminated wastewater, and the dye-adsorbed HMCMs could be easily removed by an external magnetic field. The proposed synthesis of hollow carbon microbeads can be further optimized to control the size of core-shell microbeads and the components encapsulated in the core and shell, and hence will be useful for preparing diverse types of beads for various applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.