Abstract

The new class of silica nanoparticles with unprecedented structural morphology is synthesized by hydrolysis of tetraethyl orthosilicate (TEOS) in the presence of cetyltrimethylammonium bromide (CTAB), l-arginine, and ammonium metatungstate (AMT) composite template, all in aqueous ethanol. The morphology of the synthesized mesoporous silica nanoparticles (MSNs) can be tuned from a spherical to a hollow doughnut shape through a hollow sphere by controlling the concentration of AMT in the composite template. The formation mechanism of the hollow doughnut shaped MSNs (hd-MSNs) is well-explored by means of zeta potential, high-resolution transmission electron microscopy (HRTEM) with elemental mapping analysis, and X-ray photoelectron spectroscopy. The unique structure of the hd-MSNs as well as their high thermal and mechanical stability is expected to result in their application in shape-selective catalysis, drug-delivery, and sensors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.