Abstract

Research and therapeutic targeting of the phosphoserine/threonine phosphatases PP1 and PP2A is hindered by the lack of selective inhibitors. The microcystin (MC) natural toxins target both phosphatases with equal potency, and their complex synthesis has complicated structure–activity relationship studies in the past. We report herein the synthesis and biochemical evaluation of 11 MC analogues, which was accomplished through an efficient strategy combining solid‐ and solution‐phase approaches. Our approach led to the first MC analogue with submicromolar inhibitory potency that is strongly selective for PP2A over PP1 and does not require the complex lipophilic Adda group. Through mutational and structural analyses, we identified a new key element for binding, as well as reasons for the selectivity. This work gives unprecedented insight into how selectivity between these phosphatases can be achieved with MC analogues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.