Abstract

Molecularly imprinted polymers (MIPs) are artificial receptors with template tailored recognition sites complementary to the targets. The versatility of this molecular imprinting technique has been hampered by the lack of practical synthetic procedures to prepare highly selective MIP nanoparticles targeting phospholipids, which are challenging to be imprinted due to their amphiphilic structure. Here, a novel sedimentation-based solid-phase imprinting strategy is introduced relying on polymerization in the presence of template-modified silica nanospheres (SNs). To demonstrate this concept, the sphingosine-1-phosphate receptor agonist fingolimod phosphate (FP) was coupled to SNs which were dispersed in the prepolymerization medium consisting of the fluorescent functional monomer 1,8-bis(N-vinylimidazol-N′-methyl)anthracene bromide and the crosslinking monomer ethyleneglycol dimethacrylate. High dilution polymerization of the dispersion under agitation followed by simple sedimentation-based separation of the SN template resulted in the isolation of surface imprinted fluorescent MIP nanoparticles (FMIP NPs) in a high yield (17 %). The FMIP NPs displayed fluorescence enhancement in response to the template with a high imprinting factor (IF=9) under the experimental conditions and good specificity, and could recognize FP in human serum with recoveries of 68–74 %. Moreover, the template-modified SNs could be recycled for reuse. Such molecular imprinting strategy opens a new approach to produce highly selective artificial receptors targeting phospholipids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call