Abstract
This comprehensive study declares experimentally the effects of IA/IIA metal carbonates on the formation of hexagonal boron nitride (hBN) with the aid of the available experimental methods as regards Fourier transform infrared spectroscopy (FT‐IR), powder X‐ray diffraction (XRD), scanning electron microscopy (SEM) and high resolution transmission electron microscopy (TEM). hBN is synthesized in the existence of the metal carbonates at the low temperature by modified O'Connor method. The experimental findings of FT‐IR and XRD investigations show that the addition of metal carbonates affects considerably the crystallization of hBN powder during the synthesis process. The presence of the high concentration level of the additions improves harshly the crystallinity. In this respect, the graphitization index deduced from the XRD patterns reduces with the enhancement in the amount of the dopant content. At the same time, the differentiation between the products is analyzed by the SEM surveys. According to the results, the materials synthesized by the Li2CO3 powder exhibit both the tubular form and rod‐like while the other samples prepared by the CaCO3 chemical dopant display the homogeneous plates. Even, the TEM images confirm the nanowires and nanotubes structures such as multi‐walled cylindrical, bamboo nanotubes in all the materials studied in this work.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.