Abstract

3D highly ordered silver nanoparticles (AgNPs) coated silica photonic crystal beads (Ag/SPCBs) were prepared and exploited as a novel surface enhanced Raman scattering (SERS) substrate. The monodisperse and size-controlled SPCBs were prepared via self-assembly of silica nanoparticles process using a simple microfluidic device. Then the Ag/SPCBs were easily obtained by in situ growth of AgNPs onto the NH2-modified SPCBs. Field emitting scanning electron microscopy (SEM) and energy dispersive X-ray spectrometry (EDX) were used to characterize the Ag/SPCBs. The effect of silica nanoparticle size and AgNO3 concentration on the SERS performance of the resultant Ag/SPCBs substrate were discussed in detail. The results indicate that the Ag/SPCBs have highest SERS signals when silica nanoparticle size is 250 nm and AgNO3 concentration is 0.8 mg/mL. Using malachite green (MG) as model analyte, the Ag/SPCBs substrate displayed a high sensitivity and a wide linear range for MG. The well-designed Ag/SPCBs show high uniformity and excellent reproducibility, and can be used as an effective SERS substrate for sensitive assay application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call