Abstract

In this study, furfural was used as a crosslinking agent to enhance the water resistance of lignin-phenol-formaldehyde (LPF) resin. The effect of the furfural content on the physicochemical properties of the adhesives was explored, and the possible synthesis mechanism of the furfural-modified lignin-phenol-formaldehyde (LPFF) resin adhesives was investigated. Compared with the LPF adhesive, the LPFF adhesive with 15% furfural content and 50% lignin substituent exhibited outstanding properties in all considered aspects; it had a high wet shear strength (1.30 MPa), moderate solid content (54.51%), and low viscosity (128 mPa∙s), which were 38.0% higher, 3.6% higher, and 37.5% lower than those of the LPF adhesive. Analyses via nuclear magnetic resonance and Fourier transform infrared (FTIR) spectroscopy confirmed that the furfural content improved water resistance of the lignin-based adhesive; this improvement was due to the formation of new chemical bonds between furfural and lignin to construct a dense crosslinked network structure. In addition, the decrease in viscosity and the increase in solid content enabled the adhesive to better penetrate into the wood porous structure, showing stronger adhesion. Therefore, the LPFF adhesive has superior water resistance, high strength, and good thermal stability; thus, it has a great potential for industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.