Abstract

Purpose – This paper aims to address the polymerization of 1-decene by [Emim]Cl/AlCl3 ionic liquid and the film-forming properties of the product compared with commercially available base stocks. Design/methodology/approach – Experiments were carried out to investigate the influence of [Emim]Cl/AlCl3 mole ratio, catalyst dosage, reaction temperature, reaction time and water on the polyreaction. Poly alpha-olefin (PAO) is prepared under optimal reaction condition. Film-forming properties of PAO have been compared with those of Group I, Group II and Group III base stocks, which are selected with approximately the same viscosity. Findings – Experimental results show that after a 4-h reaction time, yield of PAO can be higher than 85 per cent and viscosity index can be up to 160 with [Emim] Cl/AlCl3 mole ratio of 2:1, catalyst dosage of 3 per cent wt. and water content of 20 ppm. A strong influence of water on reaction is observed. With approximately the same viscosity, PAO shows the superiority in film thickness at low-sliding speeds compared with Group I and Group II base stocks. At high temperature, PAO provides a thicker film than other base stocks. Originality/value – In recent years, there has been considerable interest in ionic liquids. As a novel catalyst, it has so many advantages including low corrosion, low toxicity, low cost and a potentially wide range of properties compared with traditional catalysts. This paper reports the polymerization of 1-decene by [Emim]Cl/AlCl3 ionic liquid and the study on lubricating properties of PAO compared with mineral base stocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.