Abstract
Mono-disperse and spherical micro-size silver particles with high tap density were prepared by using silver nitrate as metal source, ascorbic acid as reductant, sulfuric acid as dispersant and polyethylene glycol 4000 (PEG4000) as surfactant. The aim of this paper was to study the simultaneous effects of surfactant dosage (PEG4000/AgNO3 mass ratio), silver nitrate concentration [AgNO3], deionized water dosage in reductant solution, stirring rate and their interactions on properties of silver particles. For optimizing these parameters, irregular fractional factorial design of experiments was used. As-prepared silver particles were characterized by X-ray diffraction, scanning electron microscopy, laser particle size analyzer and tap density (tap density refers to the stacking density of particles after vibration compaction) meter. The results showed that silver particles were spherical, mono-disperse and with high tap density (>5.0 g/mL), average particle size of about 2–3 μm and narrow particle size distribution. By surveying the experiment results and analysis of variance, two mathematical models were obtained and optimized parameters were determined. Analysis of the variance demonstrated that the interaction of [AgNO3] and stirring rate were the most significant factor affecting particle size and PEG4000/AgNO3 mass ratio and [AgNO3] were main significant factors affecting tap density. The predicted particle size and tap density were respectively 2.5 μm and 5.065 g/mL while the experimental results were 2.52 μm and 5.108 g/mL, which indicated that the models were in good agreement with the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.