Abstract

AbstractThe high surface area of mesoporous silica SBA-15 has been synthesized successfully by hydrothermal treatment with direct addition of PVA, triblock copolymer (P123) as a direct structure agent and tetraethyl orthosilicate (TEOS) as a precursor. The mesoporous silica SBA-15 have been characterized with nitrogen physisorption, scanning electron microscopy, Fourier transformed infrared spectroscopy, and x-ray diffraction. Measurement of nitrogen sorption indicated that with the addition of PVA, the surface area is increased but the pore volume and pore diameter is not significantly. The short time of hydrothermal treatment (20 h) and using x-ray diffraction, showed that the morphological structure of silica SBA-15 can be changed to a orthorhombic crystal system. The result of the FTIR and SEM-EDX characteristic indicated the functional groups and morphology of the SBA-15 with a narrow pore size distribution. The BET method has exhibited the largest surface area 1726 m2/g, pore volume 1.4 cm3/g, and pore diameter 3.2 nm. It can be suggested that the silica mesoporous SBA-15 will have potential application prospect in catalysis, storage, and adsorbent.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call