Abstract
The growth of high quality TeO2 single crystals for acousto-optic devices usually requires a starting powder of relatively high purity (99.995% or better). In addition to foreign metallic impurities, even minute amounts of excess Te precipitating in TeO2 can play a role in the crystal growth behavior and in the resulting properties of the crystal. In this paper, two different approaches for the synthesis of high quality TeO2 starting material have been tested, both using 99.9995% Te as precursor. In the first case, basically a high temperature oxidation process, fine Te powder was subjected to a multi-stage oxidizing process occurring either in vapor or solid phase. In the second case, a hydro-metallurgical method, Te powder was dissolved in nitric acid and then precipitated in form of TeO2. The purity was measured by glow discharge mass spectroscopy and the tellurium fraction in TeO2 was determined by measuring the absorption at 442nm of the gas phase in equilibrium with a solid sample. This technique, used for the first time to measure free Te in TeO2, has proven to apply to this system, leading to good sensitivity and good repeatability. While high temperature oxidation (vapor phase oxidation or solid state diffusion) of 99.9995% Te powder allowed for preserving the purity of the material, the incorporation of impurities was observed when the TeO2 was synthesized through a wet chemical process, leading to a 99.999% purity. This last technique, however, offered the lowest deviation from stoichiometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.