Abstract

The formation of pure single crystalline silicon nanoparticles by microwave induced decomposition of silane in a low pressure flow reactor is reported. The morphology and crystal structure of the particles are characterized in situ by particle mass spectrometry (PMS) and ex situ by means of X-ray diffraction, high resolution transmission electron microscopy, electron energy loss spectroscopy, and infrared spectroscopy. The preparation method allows for the adjustment of the mean particle diameter in the range 6 nm < or = dPM < or = 11 nm by controlling the precursor concentration, gas pressure, and microwave power. Spectroscopic investigations reveal that the particles are single crystal silicon. The potential on n- or p-type doping is in progress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.