Abstract

Conventional fertilizers face environmental and economic challenges due to their high solubility, leading to significant losses via runoff and leachate. This study presents a biodegradable hydrogel, synthesized from lignin and polyvinyl alcohol (PVA), designed as an eco-friendly carrier for struvite (fertilizer) with controlled phosphate release. The hydrogel was analysed through scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), Thermogravimetric analysis (TGA) and Differential scanning calorimetry (DSC). Furthermore, the prepared hydrogels demonstrated high water absorption capacities (963.4 %, 706.4 %, and 410 % for LH4, LH8, and LH12, respectively) and exhibited Fickian diffusion behaviour. Phosphate release studies showed a gradual release over 6–8 h with concentrations of 20.5 ppm, 19.45 ppm, and 17.85 ppm for St-LH4, St-LH8, and St-LH12. These lignin-based hydrogels offer a promising, cost-effective solution for slow-release fertilizers with high efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.