Abstract
MIL-125 is a metal-organic framework with great potential for the adsorption and separation of xylene isomers. However, MIL-125 is usually synthesized under anhydrous and anaerobic conditions. In this study, homogeneously shaped and highly crystalline MIL-125 was synthesized by introducing water-resistant titanium-containing oligomers into the synthesis process. With the assistance of the novel oligomers, MIL-125 can be synthesized in the presence of water, which meets batch-production requirements. The adsorption separation performance of the obtained highly crystalline MIL-125 was also significantly enhanced. The para-xylene/meta-xylene selectivity can reach 13.5 in mesitylene, which is higher than the selectivity values of most previously reported para-selective adsorbents. The MIL-125 xylene separation performance was verified using both batch adsorption and breakthrough experiments in the liquid phase. In addition, the influence of the solvent effect was evaluated through microcalorimetric experiments, liquid-phase adsorption experiments, and theoretical calculations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.