Abstract

Nowadays, general energy storage and electric vehicles urgently need to develop advanced lithium-ion batteries (LIB) with high specific energy and low cost, and one of the great challenges is to invent cheap cathode materials. Manganese-based cathode materials have been widely studied due to the low prices and high reserves of precursors, such as lithium-rich manganese-based (LMR) and Mn-based disordered rock-salt (DRX) cathodes. Inspired by the concept of layered-layered intergrown structure in LMR, we design a spinel-rock salt intergrown nano-composite. The as-developed cathode (Li1.7Ni0.12Mn1.48O4) shows a partially intergrown structure of spinel- and DRX-phases. Most importantly, the material enables the combination of the structural and electrochemical merits of the individual spinel and rock-salt phases, and it yields ultrahigh-capacity in comparison with the LMR or DRX and displays outstanding rate performance. It is hoped this novel intergrown cathode with low cost can inspire the design of advanced cathode for LIB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call