Abstract
Colloidal CdS nanorods with diameters near 4 nm and narrow size distributions ( approximately +/-10%) were synthesized up to 300 nm long by a sequential reactant injection technique that utilizes phosophonic acids as capping ligands. The phosphonic acid strongly passivates the nonpolar CdS surfaces and sequential reactant injection provides controlled CdS formation kinetics to enable heterogeneous and facet-selective CdS deposition on the more reactive {002} surfaces. With this process, the nanorod length can be systematically increased by increasing reactant addition to extend nanorod growth. The phosphonic acid concentration, however, is quite important, as "low" concentrations allow radial deposition and branching to occur. These high aspect ratio (>100) CdS nanorods luminesce with relatively high efficiencies of 10.8% quantum yield at room temperature. The luminescence, however, mostly arises from trap-related recombination, and the emission is significantly red-shifted from the absorption edge. Various surface passivation treatments were explored to eliminate trap emission and increase the luminescence quantum yield. Thiol and amine passivation both significantly reduced trap emission and enhanced band-edge emission, but the total luminescence quantum yields dropped significantly, with a maximum measured value of 1.5% for the amine-passivated CdS nanorods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.