Abstract

A new synthetic method of HgSe quantum dots has been investigated through template controlling with emulsion liquid membrane system. The membrane system consists of kerosene as solvent, span80 as surfactant, N7301 as carrier, and HgCl 2 solution as internal-aqueous phase containing template of different concentrations, and uses gas–liquid transport on interface of external phase. Its optimum condition is as follows, kerosene:span80:N7301 = 74:6:20, Roi=1:1. While using inorganic KI as the template and adjusting HgCl 2 concentrations (keeping KI/HgCl 2 = 10), transmission electron microscope shows that HgSe quantum dots of different sizes can be obtained respectively, X-ray diffraction (XRD) reveals that the products have a cubic structure. The research has shown that quantum confinement effect of these HgSe quantum dots (2–3 nm) have inverted band structure (HgSe bulk) increase their effective bandgap giving rise to infrared (IR) luminescence. Its forming process is also inferred.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call