Abstract
α-Glutathione (GSH), ω-biotin functionalized poly(N-isopropylacrylamide) (PNIPAAm) was synthesized via reversible addition–fragmentation chain transfer (RAFT) polymerization using a new R-group allyl functionalized trithiocarbonate chain transfer agent (CTA) and thiol–ene reactions. GPC and 1H NMR results indicated that the allyl group had no adverse effect on the RAFT-controlled polymerization of NIPAAm and PEG-A, and the new CTA could efficiently control the polymerizations. Employing radical thiol–ene and Michael addition reactions, heterotelechelic α-allyl, ω-carboxylic acid-PNIPAAm was first aminolyzed in the presence of maleimide-modified biotin and subsequently reacted with GSHvia radical thiol–ene addition to yield α-GSH, ω-biotin functionalized PNIPAAm. Glutathione S-transferase (GST) and streptavidin (SAv) were coupled in solution with heterofunctional PNIPAAmvia bioaffinity interactions. Separately, α-GSH, ω-biotin functionalized PNIPAAm was further shown to bind GST-tagged Rac1, a potential cancer marker, and biotin-tagged bovine serum albumin (BSA).
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.