Abstract

This paper presents a system level approach for the synthesis of hard real-time multitask application specific systems. The algorithm takes into account task precedence constraints among multiple hard real-time tasks and targets a multiprocessor system consisting of a set of heterogeneous off-the-shelf processors. The optimization goal is to select a minimal cost multi-subset of processors while satisfying all the required timing and precedence constraints. There are three design phases: resource allocation, assignment, and scheduling. Since the resource allocation is a search for a minimal cost multi-subset of processors, we adopted an A* search based technique for the first synthesis phase. A variation of the force-directed optimization technique is used to assign a task to an allocated processor. The final scheduling of a hard-real time task is done by the task level scheduler which is based on Earliest Deadline First (EDF) scheduling policy. Our task level scheduler incorporates force-directed scheduling methodology to address the situations where EDF is not optimal. The experimental results on a variety of examples show that the approach is highly effective and efficient.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call