Abstract
Guanidine is an important substance for modern living beings as well as for the prebiotic chemistry. We studied the reaction between ammonium and thiocyanate species in solid state with different substances (river sand, kaolin, transition metals, salts of seawater) and temperatures (80, 120 and 150 oC). The recoveries of thiocyanate and ammonium in the samples with river sand or kaolin at 150 oC were statistically different (p<0.05) from the recoveries of thiocyanate and ammonium in the sample without them. The decomposition of ammonium thiocyanate in the samples river sand or kaolin at 150 oC was about 40%. Kaolin showed to have more effect on the synthesis guanidine than river sand, because, the concentrations of guanidine in the samples with kaolin were always bigger than in the samples with river sand. The decomposition of ammonium thiocyanate in the samples with transition metals plus river sand at 120 oC was about 30%. The salts of seawater or transition metals plus ammonium thiocyanate plus river sand (120 oC) showed to increase the concentration of thiourea (seawater: 538%; transition metals: 357%) or guanidine (seawater: 393%, transition metals: 806%) when they were compared to the samples without them. When the results obtained with sample of ammonium thiocyanate were compared to the samples of ammonium thiocyanate (at 120 oC) plus salts of seawater or transition metals also an increased on the production of thiourea (168%) and guanidine (268%) was obtained, respectively. The yield for the synthesis of guanidine showed in this paper is better than that obtained by other authors. Experiments showed that iron (III) is involving in the formation of the yellow compound and Raman spectra showed this compound could be sulphur.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.