Abstract

The limitation on the spintronic applications of van der Waals layered transition-metal dichalcogenide semiconductors is ascribed to the intrinsic nonmagnetic feature. Recent studies have proved that substitutional doping is an effective route to alter the magnetic properties of two-dimensional transition-metal dichalcogenides (TMDs). However, highly valid and repeatable substitutional doping of TMDs remains to be developed. Herein, we report group VIII magnetic transition metal-doped molybdenum diselenide (MoSe2) single crystals via a one-pot mixed-salt-intermediated chemical vapor deposition method with high controllability and reproducibility. The high-angle annular dark-field scanning transmission electron microscopy studies further confirm that the sites of Fe are indeed substitutionally incorporated into the MoSe2 monolayer. The Fe-doped MoSe2 monolayer with a concentration from 0.93% to 6.10% could be obtained by controlling the ratios of FeCl3/Na2MoO4. Moreover, this strategy can be extended to create Co(Ni)-doped MoSe2 monolayers. The magnetic hysteresis (M-H) measurements demonstrate that group VIII magnetic transition-metal-doped MoSe2 samples exhibit room-temperature ferromagnetism. Additionally, the Fe-doped MoSe2 field effect transistor shows n-type semiconductor characteristics, indicating the obtainment of a room-temperature dilute magnetic semiconductor. Our approach is universal in magnetic transition-metal substitutional doping of TMDs, and it inspires further research interest in the study of related spintronic and magnetoelectric applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.