Abstract

Graphitic carbon nitride modified with kaolin-carboxyl graphene (g-C3N4/KG) was successfully synthesized using urea as the precursor and was applied for the photocatalytic degradation of pharmaceutical compound, "cefepime." Structural and optical characteristics of g-C3N4/KG were analyzed using various characterization techniques such as FT-IR, XRD, TEM, SEM, EDX, TG, BET, DRS, and PL. The PL studies confirmed that g-C3N4/KG catalyst exhibits strong charge separation and electron flow, and enhanced visible light absorption capacity was revealed by DRS studies. Studies on the active radical species demonstrate that superoxide and hydroxy radicals play a major role in the photocatalytic degradation of cefepime and dye pollutants. g-C3N4/KG showed the complete removal MB and 85% of degradation of cefepime under solar light irradiation time of 75min and 135min, respectively. Additionally, possible mechanism for the breakdown of the antibiotic cefepime was presented, along with identification of the intermediates produced during the degradation process. The study demonstrates that this novel photocatalyst could be utilized to remove dyes as well as medical wastes from water under solar light.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call