Abstract
Graphitic carbon-coated ZnPS3 is prepared via direct phosphosulfurization and high energy mechanical milling (HEMM) with multiwall carbon nanotubes (MWCNTs) and first introduced as an anode for lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs). The HEMM process with MWCNTs reduces the particle size of as-synthesized ZnPS3 bulk to 100-500nm and yields the ≈5nm thick graphitic carbon coated ZnPS3 nanoparticles, which are the nanocomposites of 5nm sized nanocrystallites embedded in the amorphous matrix. The ZnPS3 electrode undergoes the combined conversion and alloying reactions with Li and Na ions and exhibits high initial discharge and charge capacities in both LIBs and SIBs. The graphitic carbon-coated ZnPS3 electrode exhibits excellent high-rate capability and long-term cyclability. The superior electrochemical properties can be attributed to high electrical conductivity, high Li ion mobility, and high reversibility and structural stability derived from the graphitic carbon-coated nanoparticles. This study demonstrates that the novel graphitic carbon-coated ZnPS3 is a promising anode material for both LIBs and SIBs and the graphitic carbon coating methodology by HEMM is expected to apply to the various metal oxides, sulfides, and phosphides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.