Abstract

The electrocatalytic performance of graphene oxide frameworks (GOFs) for producing hydrogen peroxide is reported. Three different GOFs are synthesized by interlinking the graphene oxide sheets with different boronic acid deviates through the hydrothermal method and their electrochemical performance are investigated via cyclic voltammetry (CV) and rotating disk electrode (RDE) experiments. Through these electrochemical experiments, we find GOFs favor a 2e-reduction pathway and perform high activity and selectivity in the hydrogen peroxide production process. Taking advantage of these catalysts for the electrochemical synthesis of hydrogen peroxide has the potential to establish a safe, sustainable, and cheap flow-reactor-based production method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call