Abstract

The use of non-thermal plasma at atmospheric pressure has emerged as a technique for the substrate-free, gas-phase synthesis of graphene nanoflakes (GNFs). In this paper, a non-thermal plasma based on magnetically stabilized gliding arc discharge (MSGAD) was employed to prepare GNFs. The effects of the carbon-containing precursor, plasma gas, and arc current on the GNFs synthesis were investigated. The technique produced GNFs with sizes of 50–200 nm and 1–20 layers, spherical carbon nanoparticles with 10–40 nm diameters, and graphitic particles. The results showed that the formation of GNFs depended on the selection of proper process parameters, such as precursors with a high H/C ratio, an Ar-N2 plasma gas, a low arc current, a low precursor flow rate, and a suitable plasma gas flow rate. Correlations between the process parameters and the product morphology indicated that abundant H atoms and fewer polycyclic aromatic hydrocarbons were favorable for the formation of GNFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.