Abstract

The modification of protein-stabilized gold nanoclusters with fluorophores has been intensively applied for the ratiometric detection of biomolecules, metal ions, and anions. This study developed a straightforward strategy to prepare lysozyme nanoparticle-encapsulated gold nanoclusters (LysNP-AuNCs) as a dual-emission probe for the ratiometric sensing of cyanide through fluorescence resonance energy transfer (FRET) without the conjugation of additional fluorophores. The reduction of gold ion precursors with lysozyme generated lysozyme-stabilized AuNCs under an alkaline pH, which were demonstrated to self-assemble into nanoaggregates during the formation of AuNCs. The aggregated lysozyme molecules on the AuNCs were treated with glutaraldehyde, triggering the conversion of the aggregated lysozymes into blue-emitting lysozyme nanoparticles. As a result, the AuNCs were well distributed inside a single lysozyme nanoparticle, as demonstrated by transmission electron microscopy. The presence of cyanide triggered the etching of the AuNCs in the LysNP-AuNCs, leading to the suppression of FRET from lysozyme nanoparticle to AuNCs. The LysNP-AuNC probe was implemented for FRET detection of cyanide with a linear range of 3–100 μM. Additionally, the selectivity of the LysNP-AuNC probe for cyanide toward other anions was remarkably high. The practicality of the proposed probe was evaluated by quantifying cyanide in tap water and soils and monitoring the liberation of hydrogen cyanide from cyanogenic glycoside-containing foods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.